ON WEAK TYPE BOUNDS FOR A FRACTIONAL INTEGRAL ASSOCIATED WITH THE BESSEL DIFFERENTIAL OPERATOR

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Hardy Type Inequalities for Integral Transforms Associated with a Singular Second Order Differential Operator

We consider a singular second order differential operator ∆ defined on ]0,∞[. We give nice estimates for the kernel which intervenes in the integral transform of the eigenfunction of ∆. Using these results, we establish Hardy type inequalities for Riemann-Liouville and Weyl transforms associated with the operator ∆.

متن کامل

Applications of Multivalent Functions Associated with Generalized Fractional Integral Operator

By using a method based upon the Briot-Bouquet differential subordination, we investigate some subordination properties of the generalized fractional integral operator , , 0,z       p    which was defined by Owa, Saigo and Srivastava [1]. Some interesting further consequences are also considered.

متن کامل

Beta Type Integral Formula Associated with Wright Generalized Bessel Function

Abstract. The object of the present paper is to establish an integral formula involving Wright generalized Bessel function (or generalized Bessel-Maitland function) J ν,q (z) defined by Singh et al. [21], which is expressed in the terms of generalized (Wright) hypergeometric functions. Some interesting special cases involving Bessel functions, generalized Bessel functions, generalized Mittag-Le...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2008

ISSN: 1027-5487

DOI: 10.11650/twjm/1500405194